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Abstract. Structures involving nonmonotone, possibly multivalued reaction-displacement or
stress-strain laws cannot be effectively treated by the numerical methods for classical non-
linearities. In this paper we make use of the fact that these problems have as a variational
formulation a hemivariational inequality, leading to a noncovex optimization problem. A new
method is proposed which approximates the nonmonotone problem by a series of monotone ones.
The method constitutes an iterative scheme for the approximation of the solutions of the
corresponding hemivariational inequality. A simple numerical example demonstrates the con-
ceptual idea of the proposed numerical method. In the sequel the method is applied on an
engineering problem concerning the ultimate strength analysis of an eccentric braced steel frame.
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1. Introduction

Elements involving nonconvex and/or nonsmooth energy potentials appear in
several mechanical problems. The nonconvexity of the energy potential appears as a
result of the introduction of a nonmonotone, possibly multivalued stress-strain or
reaction-displacement law. We mention for example the nonmonotone variant of the
well known friction law of Coulomb of Figure 1a which leads to the nonconvex
energy potential of Figure 1b. Similar is the situation with the sawtooth stress-strain
law of Figure 1c which appears in reinforced concrete under tension (Scanlon’s
diagram) and leads to the potential energy function of Figure 1d. The same effects
may appear also in other problems of structural mechanics.

A common case is that of a frame structure with connections obeying to a
nonlinear moment-rotation law. This type of behaviour appears in almost every kind
of civil engineering structure (concrete, steel, composite or timber) and is a result of
pure or incomplete ‘cooperation’ between the various structural elements (which is
sometimes intentional) and incorporates various local instability effects such as
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Figure 1. Various nonmonotone laws and the corresponding nonconvex superpotentials.

buckling, crashing and cracking [27]. Figure 1e gives the typical moment-rotation
diagram of a steel beam-to-column connection. In most cases the diagram has a
significant softening branch leading to the nonconvex energy potential of Figure 1f.

The same type of diagrams relates also the moment with the rotatonal capacity of
steel beams, where the softening branch has its nature in the combination of material
nonlinearity with severe local buckling of the various parts of the cross-section [7].

The usual problem in structural analysis consists in finding the minimum of the
potential function expressing the total work of the system, i.e. that absorbed by the
structure minus that supplied by the loading field. When the mechanical system
remains in the normal operational framework, i.e. the loads are not severe enough to
cause structural damage and no other complex physical mechanisms (material
behaviour, unilateral contact, geometric nonlinearity, etc.) contribute to the energy
balance of the system, the potential functional is quadratic and the respective
unconstrained quadratic minimization problem constitutes a simple, everyday
practice problem for the engineering community. In all other cases nonquadratic
potentials arise.

Due to this non-quadratic form of the potential function, one is compelled to use a
Newton-Raphson type non-linear solution technique. However, there is often the
case that the classical methods of linear or linearized analysis encounter forbidding
difficulties both in the formulation and in the numerical approximation of problems
involving nonmonotone, possibly multivalued stress-strain or reaction-displacement
laws such as the ones introduced previously [16, 19, 20, 22]. Then, the respective
energy functionals (superotentials) involved, are nonconvex and possibly non-
smooth.

The variational forms for such problems are termed hemivariational inequalities
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[19, 20–22]. The respective nonconvex energy functions are called nonconvex
superpotentials in accordance to the case of monotone mechanical behaviour
described by convex superpotentials, where variational inequalities are obtained
[20].

The theory of variational inequalities is closely related to the notion of convex,
nondifferentiable superpotentials introduced into mechanics by J.J. Moreau [15] for
monotone possibly multivalued boundary conditions and constitutive laws. On the
other hand, the hemivariational inequalities were introduced as a generalization of
the variational inequalities by P.D. Panagiotopoulos [19, 20, 23]. They are directly
related to nonconvex superpotentials and describe nonmonotone boundary or
constitutive laws.

The theory of hemivariational inequalities leads to the result that local minima of
the potential or the complementary energy of the structure represent equilibrium
positions of the problem. It is possible, however, that certain solutions of the
problem may not be local minima but other more general types of points which
make the potential or the complementary energy ‘substationary’. They are solutions

¯of the differential inclusion 0 [ ­P(u), where P is the potential energy, u is the
¯displacement vector and ­ denotes the generalized gradient of Clarke–Rockafellar

[2, 25] which can be understood as an extension of the notion of the classical
derivative in order to cover nonconvex and nonsmooth functions. Analogous
substationarity problems can be formulated in terms of the complementary energy of

c cthe structure P and the stresses s, i.e. 0 [ P (s).
Therefore, the substationarity points obtained constitute all the possible solutions

of a hemivariational inequality. This is a generalization of the minimum potential or
complementary energy theorems which hold in the case of variational equalities and
inequalities [11–14, 20].

The determination of the full set of solutions of a substationarity problem, even
when only smooth functionals are involved, remains as yet an open problem and
constitutes an area of active research in the field of computational mechanics. This
holds indeed for a global optimization problem as well, the latter being only a
particular case of the general substationarity problem [4,18].

Moreover, one must keep in mind that the questions posed in mechanics are
sometimes different from the ones of global optimization. A global minimum of the
potential energy of a structure may be of relatively less importance if a given
loading history is not sufficient to drive the structure near this equilibrium point.
Stable or unstable equilibria, i.e., local minima or substationary points attainable by
the given loading path may be of importance in this latter case.

Although the progress in the theoretical study of the existence and approximation
questions for hemivariational inequalities is considerable [9, 17, 23, 24], relatively
few methods exist for the numerical treatment [3, 5, 8, 10]. Some of these methods
can find only very limited use in practical applications, due to the fact that their
effectiveness fails rapidly with increasing problem size (order of one hundred of
unknowns), due mainly to numerical stability problems. Moreover, they have
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inherent difficulties regarding the treatment of the complete vertical branches of the
stress-strain or reaction-displacement diagrams.

For all the above reasons, in engineering applications, the sole mathematical
examination of the problem has to be abandoned and more heuristic methods have
to be investigated [14], which take into account the engineering characteristics of the
problems at hand.

The aim of the present paper is to demonstrate a new method for the solution of
the nonconvex optimization problems in mechanics and engineering. The charac-
teristic of the developed method is that it reduces the nonconvex optimization
problem into a number of convex minimization subproblems. This is equivalent to
the approximation of the hemivariational inequality describing the problem involv-
ing the nonmonotone laws by a number of variational inequalities that involve
monotone laws only. Subsequently, each variational inequality can be treated
effectively by specialized convex minimization algorithms [4, 26]. The verified
reliability and high convergence rates of the latter make a precious advantage.

2. Description of the heuristic method

In this section a heuristic algorithm is presented for the solution of the substationari-
ty problem of a nonconvex function P(x) which is composed of a convex part f (x)c

and a nonconvex part w(x), i.e.

P(x) 5 f (x) 1 w(x) . (1)c

This case is very common in mechanics where we deal with problems involving a
number of elements with convex energy density and a number of elements with
nonconvex energy density.

The substationarity problem of P(x) can be written equivalently in the form of the
differential inclusion

¯0 [ ­P(x) (2)

¯where ­ denotes the generalized gradient of Clarke–Rockafellar [2, 25], which is an
extension of the subdifferential ­ of convex analysis for nonconvex problems.

The aim of the proposed algorithm is to avoid the nonconvex minimization
problem by minimizing a sequence of appropriately defined convex functions in

(i )which the nonconvex part w(x) has been replaced by the convex function p (x).
Consider first the following minimization problems

(i ) (i )minhP 5 f (x) 1 p (x)j (3)c c

(i )where in each step the convex function p (x) is selected such that the following
relation is fulfilled

(i ) ¯­p (x) 5 ­w(x) (4)
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(i21) (i )at the point x . In this case the function P is a sum of convex functions andc

thus a convex function itself.
Then, the nonconvex minimization problem is written in the form

(i ) (i )minhP(x)j 5 minh f (x) 1 p (x) 1 [w(x) 2 p (x)]jc

(i ) (i )
5 minhP 1 [w(x) 2 p (x)]j (5)c

or equivalently, the differential inclusion (2) in the form

(i ) (i )¯ ¯ ¯0 [ ­P(x) 5 ­( f (x) 1 w(x)) 5 ­( f (x) 1 p (x) 1 w(x) 2 p (x))c c

(i ) (i )¯ ¯, ­( f (x) 1 p (x)) 1 ­(w(x) 2 p (x))c

(i ) (i )¯5 ­( f (x) 1 p (x)) 1 ­(w(x) 2 p (x))c

(i ) (i )¯5 ­P 1 ­(w(x) 2 p (x)) . (6)c

Based on the previous decomposition of the convex and nonconvex parts, the
following approximation scheme can be formulated:

1-step 0-step
!%$#%" !%%%%$#%%%%"

(1) (1) (0) (0) (0)minhP (x)j 5 minhP (x) 1[w(x ) 2 p (x )]jc

(1) (1)
5 minhP (x)j 1 Cc

???
(i21)-stepi-step

!%$#%" !%%%%%%$#%%%%%%"

(i ) (i ) (i21) (i21) (i21)minhP (x)j 5 minhP (x) 1[w(x ) 2 p (x )]jc

( i) (i )
5 minhP (x)j 1 Cc

???
(n21)-stepn-step

!%$#%" !%%%%%%$#%%%%%%"

(n) (n) (n21) (n21) (n21)minhP (x)j 5 minhP (x) 1[w(x ) 2 p (x )]jc

(n) (n)
5 minhP (x)j 1 C . (7)c

In the above iterative procedure, the first part is referred to the current step,
whereas the second part is a scalar number obtained from the solution of the
previous step. Using the above decomposition, in each step i, only the convex part

(i ) (i ) (i )
P (x) 5 f (x) 1 p (x) is minimized and the obtained solution x is used for thec c

(i11)selection of a new convex approximation p (x) of the nonconvex function w(x)
through (4). This convex function will be used in the next step of the iterative

(i11) (i )procedure. Also, the constant term C is calculated, at the equilibrium point x .
If we suppose that in the last case we have the convergence of the iterative

(n) (n21)scheme, then we have that ux 2 x u < « , where « is an appropriately small1 1
(n)number. On the assumption that x is not a nondifferentiability point of w(x), then

(n) (n21)uC 2 C u < « where « is also an appropriately small number. In the case that2 2
(n) (n) (n21)x is a nondifferentiability point of w(x) then the condition ux 2 x u < « is not1



306 E.S. MISTAKIDIS

(n) (n21)sufficient to have convergence but the condition uC 2 C u < « should also be2

satisfied.
Finally, we can write for n large enough that

(n)argminhP(x)j 5 argminhP (x)j (8)c

where in the left-hand side we mean the local minimum sought.
By means of the previous relations it is easily verified that a solution of the initial

minimization problem of P(x) can be obtained using the proposed iterative scheme
but the full proof of convergence remains still an open problem. However, in the
various numerical experiments we have performed for special forms of convonvex
superpotentials, convergence was always achieved in a small number of steps
[11, 12, 14].

Here we shall show the graphical meaning of the iterative scheme defined by (3),
(4). Let us assume the one-dimensional nonconvex function P(x) 5 f (x) 1 w(x)c

which results as a sum of the convex function f(x) and of the nonconvex function
w(x) (see Figure 2a). The nonconvex function w(x) results from the integration of the
nonmonotone law g(x) (Figure 2b). In an engineering problem this law can be
understood, for example, as a nonlinear stress-strain relation or as a nonlinear

Figure 2. (a) The nonconconvex function P(x) 5 f (x) 1 w(x). (b) The nonmonotone lawc

corresponding to w(x). (c) Graphical explanation of the heuristic nonconvex minimization
algorithm.
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boundary condition. In this case, the nonconvex function w(x) is the superpotential
of the law g(x).

In the first step we approximate the nonmonotone law g with the fictitious
(1)monotone law h of Figure 2c. This monotone law gives rise to the convex

(1) (1) (1)function p . The minimization of P (x) 5 f (x) 1 p (x) (which is a sum ofc c
(1)convex functions) gives as a unique solution the value x . This is not a solution of

the minimization of P(x) because the solution point does not lie on the non-
(2)monotone law g(x). We select now a new convex function p such that relation (4)

is fulfilled. For the one-dimensional case treated here this relation is equivalent to
(2) (1) (1)h (x ) 5 g(x ). One possible such monotone law is the one depicted in Figure

(2) (2) (2)2c. The minimization of P (x) 5 f (x) 1 p (x) yields the solution x and thisc c

procedure is continued until the difference between the solutions of two consecutive
iterations is small enough. In this case, as it is obvious from (7), the minimizer of

(n)
P (x) will also minimize P(x).c

We have to notice here that the possibility presented in Figure 2c for the
approximation of the nonmonotone law is only one of the different monotone laws
that would approximate the nonmonotone one. In general, the convex superpoten-
tials that approximate the nonconvex superpotential are selected in such a way that
the computational effort for the solution of the arising convex problem is minimized.
This task depends on the particular nonconvex functions to be approximated.

Thus, the following heuristic algorithm can be formulated:
(0)1. Select a starting point x and initialize i to 1.

(i ) (i )2. For the point x select a convex superpotential p such that relation (4) is
fulfilled at this point.

(i )3. Find the minimum x of the convex function

(i )f (x) 1 p (x) .c

4. Calculate

(i11) (i ) (i ) (i )C 5 w(x ) 2 p (x ) .

(i ) (i21) (i11) (i )5. If ix 2 x i < « and iC 2 C i < « where « and « are appropriately1 2 1 2

small numbers, then a substationarity point of (1) has been determined and
terminate the algorithm, else set i 5 i 1 1 and repeat step 2.

(0)Given a starting point x , the above algorithm is able to detect a substationarity
point of P(x) and not only a local minimum point, as it becomes obvious from (6).
Different starting points of the iterative procedure, may lead to different substation-
arity points of P(x).

Concerning the minimization problem of Step 3 of the above algorithm, we have
to notice that this convex minimization problem is considered nowadays a trivial
task and a lot of efficient algorithms can be applied [4] for its numerical treatment.



308 E.S. MISTAKIDIS

Figure 3. A model unilateral contact problem with nonmonotone friction.

3. A characteristic example

As a first example we will consider the simple structure of Figure 3. The structure
consists of the rigid body G which comes in contact with an elastic support.
Between the body and the support frictional conditions arise for which we assume
that the nonmonotone law of Figure 3 holds. Moreover, the body is connected with
an elastic element with a rigid support. The modulus of elasticity for this element is
E 5 4 and has unit length L and cross-section area A. The spring constant for the
elastic support is k 5 8. The structure is loaded with the forces P 5 1 and P 5 21x y

at G. For the given loading we want to determine the possible equilibrium positions
of the system.

With the given data we formulate the potential energy of the structure as a
function of the displacements u , u of the point G. The total potential energy P isx y nc

written as the sum of the potential energy of the linear element and of the elastic
support and of the superpotential of the frictional joint, i.e.

1 T T]P 5 u Ku 1 j(u ) 2 u P , u < 0 (9)nc x y2

T Twhere u 5 [u u ] , P 5 [P P ] and K is the stiffness matrix of the structurex y x y
4 0which has the very simple form K 5 .f g0 8

Moreover, the nonconvex superpotential j(.) has the form depicted in Figure 4b.
The nonconvex function P , for u [ [20.1, 0.5] and u [ [0, 20.25] is depicted innc x y

Figure 5a. As it is more clear in Figure 5b, the function has 3 substationarity points,
i.e. 1 global minimum, 1 local minimum and 1 saddle point. We notice that even
with two unknowns, the situation can be very complicated. Now we will see how
the proposed algorithm can approximate the above substationarity points. In this
problem, in order to approximate the nonmonotone law we select monotone laws of
the type depicted with the dashed line in Figure 3a (Coulomb friction laws).

Starting the algorithm from the point (u , u ) 5 (0, 0) we obtain as a solution thex y

global minimum (0, 20.125). Defining other starting points, the algorithm con-
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Figure 4. The adopted friction law and the respective nonconvex superpotential.

verges to other solutions. Thus, if we start from the point (0.2, 0.00) we obtain as a
solution the point (0.25, 20.125).

Although the algorithm was able to determine the global and the local minimum,
it was impossible to obtain as solution the saddle point. This is due to the fact that
the proposed method approximates the nonconvex functional with convex ones, thus
it has the inherent property to approximate only substationarity points that give
adequate convexity information in their neighborhood. Under these circumstances, it
is impossible to obtain as a solution local maxima and saddle points, unless the
starting point coincides with one of them. From the engineering point of view this
result seems acceptable as these substationarity points are not stable solutions of the
problem.

4. Application to structures involving softening elements

In this section we will study the case of a structure with elements obeying to
nonlinear moment-rotation laws.

Without loosing generality let us assume a structure V consisting of bar elements.
For the material of m of these elements we assume that the classic elastoplastic law
of Figure 6a holds. This law yields the convex superpotential q(w) of Figure 6b.

Moreover, let us assume that the structure contains l elements exhibiting a
softening behaviour, i.e. a nonmonotone law M 5 g(w) (Figure 6c) relates the
moment M with the rotational capacity w. In this case the respective nonconvex

˜ ˜superpotential w(w) is one-dimensional and w(j ) is the area between the horizontal
j˜axis and the graph until the point j of the horizontal axis, i.e. w(j ) 5 e g(w) dw0

(see Figure 6d).
We define now the set 6 consisting of the m elements of the first category and1

the set 6 consisting of the l elements of the second category. For this problem, the2

principle of virtual work is written in the form:

T Ts (e(u*) 2 e(u)) 5 p (u* 2 u) ;u* [V (10)ad
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Figure 5. (a) The nonconvex potential energy function of the structure. (b) Isolines of the
potential energy function.

where s, e, p, u are the stress, strain, loading and displacement vectors, respectively,
and V is the kinematically admissible set (i.e. fixed nodes have u 5 0). Supposead i

now that s (resp. e) consists of three parts s , s and s (resp. e , e and e ) where s1 2 3 1 2 3 1

(resp. e ) corresponds to the moments (resp. the rotations) of the elements of set 6 ,1 1

s (resp. e ) corresponds to the moments (resp. the rotations) of the elements of set2 2

6 and s (resp. e ) corresponds to the rest stresses (resp. strains) of both sets.2 3 3

Equation (10) is now written in the form

T T Ts (e (u*) 2 e (u)) 1 s (e (u*) 2 e (u)) 1 s (e (u*) 2 e (u))1 1 1 2 2 2 3 3 3

T
5 p (u* 2 u) ;u* [V . (11)ad
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Figure 6. Monotone and nonmonotone moment-rotation relationships and the corre-
sponding superpotentials.

For the m elements of 6 we can write s [ ­q(e ), k 5 1, . . . , m which is1 1k 1k

equivalent to the variational inequality

Tqe (u*)) 2 q(e (u)) > s (e (u*) 2 e (u)) , k 5 1, . . . , m ;u* [ R .1k 1k 1k 1k 1k

(12)

¯ ˜Similarly, for the l elements of 6 we can write s [ ­w(e ), j 5 1, . . . , l which2 2j 2j

is equivalent to the hemivariational inequality

0 Tw̃ (e (u*) 2 e (u)) > s (e (u*) 2 e (u)) , j 5 1, . . . , l ;u* [ R (13)2j 2j 2j 2j 2j

0˜ ˜where w is the directional derivative [23] of the nonconvex superpotential w.
Using the inequalities (12), (13), Equation (11) is transformed in the form

m l
0 T˜O [q(e (u*)) 2 q(e (u))] 1 O w (e (u*) 2 e (u)) 1 s (e (u*) 2 e (u))1k 1k 2j 2j 3 3 3

k51 j51

T
> p (u* 2 u) ;u* [V , (14)ad

which is a variational-hemivariational inequality. The corresonding substationarity
problem reads:

Find u [V such that the potential energyad
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m l1 T T˜]P (u) 5 u Ku 1 O q(e (u)) 1 O w(e (u)) 2 p u (15)nc 1k 2j2 k51 j51

Tis substationary, where K 5 G K G , K is the inverse of the natural flexibility3 0 3 0

matrix F and G is the equilibrium matrix that corresponds to s .0 3 3

The solution of the above problem can be found by applying the heuristic
nonconvex optimization approach presented in Section 2. Using approximating
monotone laws having the same shape with the classical plasticity law of Figure 6a,
the problem arising in each step of the iterative procedure is a classical plasticity
problem which can be treated numerically by the classical plasticity methods of
structural analysis.

5. Numerical application

As an example we will consider the multistorey eccentric braced plane frame of
Figure 7. The structure consists of HEB300 columns and IPE220 beams. The
diagonals are HEA100 elements. In the case of seismic loading, this kind of frames
shall be designed so that the beams connected to the diagonals are able to dissipate
energy by the formation of plastic bending mechanisms. Therefore, the adoption of
different moment-rotation curves for these beams may result to different ultimate
strength for the whole frame.

For the rotational capacity of the beams of the structure the general moment-
rotation curve of Figure 8a is assumed to hold while for the columns the classical
elastoplastic diagram is used. In the diagram of Figure 8a, the parameters m, w , w ,y u

K , K are calculated according to the works of Kato and Akiyama [1, 6].h d

In the particular case treated here, due to the lack of torsional restraint of the

Figure 7. Multistorey eccentric braced frame.
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Figure 8. (a) General moment-rotation relationship. (b, c) The adopted moment-rotation
laws.

beams, flexural-torsional buckling has to be taken into account. According to the
previously mentioned literature, this effect, together with the local buckling effect
has as a result the reduction of the parameter m. In the case that the calculated
parameter m is less than 1, the strain-hardening branch of the diagram of Figure 8b
is eliminated. Also, the coupling of the buckling modes leads to a higher slope of
the softening branch [1, 6]. The specific geometrical and elastic data used here lead
to the moment-rotation diagram of Figure 8b (law f ). For comparison reasons, the1

simple law of Figure 8c is also considered (law f ) which is similar to the classical2
2plasticity law. The steel grade is Fe360 with a yield stress of 235 N/mm .

The loading of the structure is shown in Figure 7, where P 5 30.0 kN and1

P 5 30.0 kN. Forty load cases are considered, by multiplying the horizontal loads2

with the factors of Table 1, while the vertical loads remain constant.
The structure is analyzed using the algorithm of the previous section. Figure 9a

Table 1. The considered load cases

Load case Factor Load case Factor

5 1.25 25 2.25
10 1.50 30 2.50
15 1.75 35 2.75
20 2.00 40 3.00
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Figure 9. (a) Load-displacement curves for characteristic nodes of the frame. (b) Differ-
ences of the displacements resulting from the assumption of laws f and f , with respect to1 2

the load.

gives the horizontal displacements for selected nodes of the structure, for the
assumption of the two different moment-rotation curves. As the horizontal loading
increases, more and more beams enter into the softening region of the moment-
rotation curve. This phenomenon has as a result the gradual reduction of the beams’
moments, the redistribution of the stresses of the whole frame, and the increase of
the moments in the columns. Further increase of the horizontal loading has as a
result the plastification of the lower sections of the columns. Finally, as the
plastification procedure develops under increasing loading, the whole frame
becomes kinematically unstable and collapses at load case 35. Analogous is the
situation if we assume that the moment-rotation law of Figure 8c holds. In this case,
the elastoplastic diagram has as a result the constant value of the moment, after
reaching the plastification moment M . Thus, the redistribution of the stresses isp

slower due to the increased rotational capacity of this law and the frame collapses at
load case 38. Therefore, the collapse load for law f is about 6% higher than the2

collapse load for law f .1

As it was expected, the assumption of the softening moment-rotation curve results
to larger horizontal displacements. Figure 9b gives the differences Du of the
displacements that correspond to the assumption of law f from the ones that1

correspond to law f , with respect to the various load cases. The results are depicted2

for the characteristic nodes 5, 15, 25. It is noticed that the differences of the
displacements increase together with the loading.
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